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ABSTRACT

This work investigates the performance of a multiple target
tracker that exploits bearings-only measurements from a
network of unattended ground sensors (UGS). To conserve
energy while interrogating multiple maneuvering targets,
the tracker integrates node resource management with the
multiple-mode probabilistic data association (PDA) or joint
probabilistic data association(JPDA) filter. Experiments
show that for sufficiently separated targets, the global node
selection leads to better geolocation performance than the
’closest’ selection approach when the number of active
nodes is set to two per snapshot. A track purity metric is
also calculated to quantify the quality of the measurement-
to-track association performance of the tracking filter.

1 I NTRODUCTION

Dense networks of unattended ground sensors (UGS)
promise to provide an effective and affordable solution for
surveillance and reconnaissance. Such networks can be
used for perimeter (or flank) protection. It is envisioned
that each node on the network, i.e., the individual UGS, will
communicate with each other in order to self-organize into
an effective system to detect, identify and localize threats.
To enhance the sustainability and survivability of the sol-
dier, it is important that the UGS network be able to effec-
tively collect and fuse information for as long as possible.
To this end, it is very important to develop resource man-
agement techniques so that only the most effective UGS
nodes are collecting, sharing and disseminating informa-
tion to the solider.

This work presents our current progress to develop the
resource manager that will integrate into the decentralized
data fusion architecture being developed under the ARL
Advanced Sensors CTA (Filipov et al. 2004). In prior work,
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we developed automated methods to select active nodes for
tracking a single target when the nodes consist of micro-
phone arrays that estimate the direction of arrival (DOA) of
ground vehicles (Kaplan et al. 2002; Kaplan 2003; Le et al.
2004). In this work, we integrate the global node selection
approach with more sophisticated filtering methods to track
multiple targets. Specifically, we evaluate multiple-mode
(MM) probabilistic data association (PDA) and MM joint
probabilistic data association (JPDA) (Bar-Shalom and Li
1995) filters using node selection over real data collected
by the U.S Army Research Laboratory (ARL).

2 M EASUREMENT AND DYNAMICAL

M ODEL

In this paper, the position and velocity for thet-th tar-
get are labeled asP t = [P t

x, P t
y ]T andV t = [V t

x , V t
y ]T ,

respectively. The state for thet-th targetxt(k) at time
k is concatenated by the target position and velocity, i.e.
xt(k) = [P tT

, V tT ]T . The bearing angles are used as the
measurements. The UGS network consists ofNs nodes
where thej − th node reportsmj measurements at a given
snapshot. Thel-th measurement reported by thej-th node
at snapshot timek is related to the target state via the non-
linear equation

zl
j(k) = Hj(xf(l)(k)) + ηl

j(k)

where

Hj(xt) = arctan
(

P t
y − Sj,y

P t
x − Sj,x

)
(1)

is the bearing angle andSj = [Sj,xSj,y] is the posi-
tion of the the j-th node. The state indexf(l) rep-
resents the measurement-to-target (or track) association.
The measurement errorηl

j(k) is modeled as zero mean
Gaussian noise with varianceσ2. This error is uncorre-
lated between the different measurements and nodes, i.e.,
E{ηp

i (k)ηl
j(k)} = σ2δi,jδl,p.
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The target motion can be represented by the coordinated
turn (CT) dynamic model where the mode parameter is de-
noted by the turn rateω,

x(k + 1) = F (ω)x(k) + Av(k + 1), (2)

where

F (ω) =




1 0 sin ωT
ω

cos ωT−1
ω

0 1 1−cos ωT
ω

sin ωT
ω

0 0 cos ωT − sin ωT
0 0 sin ωT cos ωT


 ,

and

A =




0.5T 2 0
0 0.5T 2

T 0
0 T


 .

The vectorv(k + 1) is the process noise assumed to be
Gaussian with covarianceσ2

µI . We also need a station-
ary dynamical model to follow a stationary or low-velocity
target, i.e., the dynamic matrix

F =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 .

3 THE TRACKER

The measurement equation and the set of dynamical mod-
els leads to a bank of extended Kalman filters (EKF). This
section discusses how the tracker integrates the Kalman fil-
tering and node selection. Based upon empirical evidence,
the tracker sets the bearing errorσ = 5◦ for this work.
The subsequent sections provide experimental results for
the process noise parameterσ2

µ that leads to the smallest
root mean squared (RMS) position error.

The integration of the node selection and filtering in the
tracker is illustrated in Figure 1. The initialization methods
are described in the following subsection. The subsequent
subsections describe the modules in Figure 1. At this point,
the track manager simply maintains the current tracks over
the entire data collection interval. In future work, we will
develop a track manager to initiate new tracks and kill old
ones.

3.1 Initialization

Multiple tracks are initialized (see (Kaplan et al. 2001)) by
minimizing

C(P ) =
Ns∑

j=1

min
l
|zl

j(k)− 6 (P − Sj)|2. (3)

Figure 1: Structure of node selection with MM-PDA or
MM-JPDA.

The number of bearing measurementsmj varies at different
nodes because of false alarms and missed detection. Some
of the local minima should correspond to true targets. How-
ever, other local minima could appear due to ghosting and
noise. For this work, the location of the local minima clos-
est to the ground truth target positions are used to initialize
the Kalman filters. Furthermore, the initial velocity is set
to zero. We also considered another initialization using the
true target positions. Future work will use all local minima
to initialize tracks. Then, the track manager can kill false
tracks.

3.2 Probabilistic Data Association (PDA) and Joint
PDA (JPDA)

In PDA/JPDA, the number of estimated tracks is assumed
or maintained by the track manager. In the filtering stage,
each track is updated using a weighted sum of measurement
residuals via

x(k|k) = x(k|k−1)+
Ns∑

j=1

Wj

m̃j∑

l=1

βl
j(z

l
j(k)−zj(k|k−1)),

(4)

P−1(k|k) = P−1(k|k − 1) + PdPg

Ns∑

j=1

1
σ2

j

∇Hj∇HT
j ,

(5)
wherePd andPg represent the probability of detecting a
measurement and the probability the measurement passes
the gating threshold, respectively.̃mj is the number of the
validated measurements defined byPg. Furthermore,Wj

is the Kalman gain and∇Hj is the Jacobian ofHj as given
in (1), i.e.,

∇Hj∇HT
j =

1
rj

[
sin φj cos φj

]
,



whereri andφi are the 2-D polar coordinates for the po-
sition of theith node relative to the target. Finally,βl

j is
the association probability, i.e., the likelihood that thel-th
measurement should be associated to a given track.

Both PDA and JPDA use a gate to eliminate
measurement-to-track associations that are clearly poor.
Simply given a an existing target trackt, ε =
(zj(k)−zt

j(k|k−1))2

σ̃2
j

follows a chi-squared distribution with

1-degree of freedom. Note that̃σj = ∇HjPi(k|k −
1)∇Hj

T + σ2
j , wherezj(k|k − 1) and P (k|k − 1) are

the predicted measurement and covariance, respectively.
The gate probabilityPg =Pro(ε < g2) is a user defined
parameter. Once it is set,g can be computed. Then,
the validated measurements of nodej for track t are

{zl
j(k)| |z

l
j(k)−zt

ij(k|k−1)|
σ̃j

< g, l = 1, 2, . . . ,mj}. Clearly,
the size of the validated measurement set ism̃j for a given
track.

In PDA, one of the validated measurements is originated
from an existing target, and the remainder are of random
clutter, which does not take into account that one out of the
remaining measurements may come from anther target. We
assume the detection probability is the same for each node
and each target. Assuming a uniform clutter distribution,
the probability that none of the measurements are target
originated is

β0
j =

b

b +
∑l=m̃j

l=1 ∧l
j

, (6)

and the probability that measurementl is target originated
is

βl
j =

∧l
j

b +
∑l=m̃j

l=1 ∧l
j

, (7)

where∧l
j is the likelihood thatzl

j(k), i.e., thel-th validated
measurement from nodej, is associated to the track so that

∧l
j = N (zl

j(k); zj(k|k − 1), σ̃2
j ). (8)

In other words, if the measurement is actually associated
to the track, then the measurement residual is zero mean
Gaussian with variancẽσ2

j . Also, b = m̃j

V (1 − PdPg)/Pd

where V is the volume of the gate. Explicitly,V =
2g|σ̃j |0.5.

The JPDA tracker is similar to the PDA tracker with the
exception of the calculation of the target/measurement as-
sociation probability (Bar-Shalom and Li 1995; Roecker
1994). Since the JPDA takes into account the existence
of the multiple targets, the target/ measurement association
probability must be marginal, i.e., the probability of track
t being associated with measurementl for nodej is com-
puted by enumerating all possible joint events that contains
association(t, l). Therefore,βl

j =
∑

P{θ}/c whereθ is a
joint event that contains an association(t, l) andc is a nor-
malization constant. A joint event is a set of measurement-
to-track associations which have measurements assigned to

either clutter or tracks and each track assigned to only one
measurement or declared missed. The probability of any
joint event is computed by

P{θ} =
φ!
V φ

mj∏

l=1

{N (zl
j ; z

t
j(k|k − 1), σ̃2

j,t)}τl

×
Nt∏
t=1

(Pd)δt(1− Pd)δt ,

whereφ is the number of clutter hits,τl is a binary num-
ber indicating whether measurementl is assigned to a track
t, δt is a binary number indicating whether on not track
t is assigned to a measurement, andNt is the number of
tracks. Given a case with a total of four measurements,
where Measurements 1 and 4 both fall inside the gates of
the two established tracks, but Measurement 2 can only be
associated with Track 1 and Measurement 3 can only be as-
sociated with Track 2, then there are four joint events that
contains the association of Track 1 with Measurement 2
(1,2):

• θ1 = (1, 2), (2, 1), (clutter, 3&4),

• θ2 = (1, 2), (2, 3), (clutter, 1&4),

• θ3 = (1, 2), (2, 4), (clutter, 1&3),

• θ4 = (1, 2), (2, missed),(clutter,1&3&4).

3.3 Multiple-mode(MM) Tracking

The MM tracker (Bar-Shalom and Li 1995) employs a bank
of mode-matched filters that can represent a standard EKF,
a PDA filter or a JPDA filter (see Figure 1). The initial state
and covariance for each mode-matched filter is the same
and given by the previous global state and covariance in
the MM. The global state update is the weighted sum of
the state outputs of each mode-matched filter expressed by

x(k|k) =
N∑

i=1

xi(k|k)µi(k), (9)

whereµi(k) is the mode probability,xi(k|k) is the state
output of theith mode-matched filter andN is the num-
ber of the mode-matched filters. Likewise, the covariance
update is given by

P (k|k) =
N∑

i=1

{(x(k|k)− xi(k|k))(x(k|k)− xi(k|k))T

+Pi(k|k)}µi(k),

wherePi(k|k) is the covariance output of thei-th mode-
matched filter.

The weightsµi(k) are derived from the likelihood of
each mode representing the true dynamics of the target.
The measurement-to-track likelihood is computed via (8)



for each modei and is explicitly labeled as∧l
ij . Using

the additive fusion strategy suggested in (Chen and Olson
2003), the likelihood that the target dynamics follow mode
i given the current measurement set is

∧i(k) =
Ns∑

j=1

m̃j∑

l=1

∧l
ij . (10)

The mode likelihood (10) measures the difference between
the assumed model expressed by the predicted measure-
ment and the true model denoted by the received measure-
ment. In other words, if model difference is larger, the like-
lihood that the current measurement follows the assumed
model gets smaller. Finally, the mode probabilityµi(k) is
updated via Bayes rule whereµ(k − 1) is the prior proba-
bility, i.e.,

µi(k) =
∧i(k)µi(k − 1)∑N

j=1 ∧j(k)µj(k − 1)
. (11)

3.4 Node selection

A node selection algorithm is embedded in a resource man-
ager to determine which subset of nodes will be active for
a given snapshot of data collection. In this paper, we use
the global node selection (GNS) approach (Kaplan 2003).
The selection is global in the sense that each node knows
the exact locations of all other nodes in the network. Lo-
calized node selection has also been proposed where only
information about neighboring nodes is known, e.g., (Ka-
plan et al. 2002). A localized method will be integrated in
to the multiple target tracker in future work.

GNS is a nearly optimal approach to determine which
active set of nodesNa provides the best geometry to local-
ize a target. In short, the objective of the node selection is
to minimize the expected RMS position error over all pos-
sible combinations ofNa nodes. Without accounting for
the prior measurements, the expected RMS position error
can be extracted from (5) as

ρ =
√

trace
{
J−1

}
, (12)

whereJ is the Fisher information matrix (FIM), i.e., the
inverse of the position covariance, such that

J =
∑

i∈Na

1
σ2

i

1
r2
i

(
sin2 φi − sin φi cos φi

− sin φi cos φi cos2 φi

)
.

(13)
The GNS is a Greedy simplex approach to find the bestNa

nodes. It starts by determining the best two nodes via ex-
haustive search. Then, it adds one node at a time to the
active set. Finally, single node replacements that reduce
(12) are exhausted. The GNS approach reduces the compu-
tational complexity fromO(NNa) with exhaustive search
to O(N2). Effectively, the GNS method selects nodes that
surround the target and are within close proximity of the

target. To baseline the GNS method, we also consider the
’closest’ node selection approach that selects theNa nodes
which lie closest to the predicted target location.

Figure 1 shows how node selection is integrated into the
tracking filter. Prediction is critical in the combined node
selection and MM-PDA/MM-JPDA due to the following
reasons: 1) Node selection algorithms use the prediction
to determine which subset of nodes will be active, and
2) when none of the current measurements lie in the gate for
a given modei, the mode likelihood is zero, i.e.,∧i(k) = 0.
When

∑N
i=1 ∧i(k)µi(k − 1) = 0, we can infer that none

of the assumed modes is correct. In this case, it is better to
use the predicted target state and covariance instead of us-
ing the filtered ones. The predicted state and covariance in
the MM-PDA/MM-JPDA with the node selection are given
by (see (Blackman and Popoli 1999)):

x(k|k − 1) =
N∑

i=1

xi(k|k − 1)ui(k − 1),

P (k|k − 1) =
N∑

i=1

Pi(k|k − 1)ui(k − 1),

wherexi(k|k − 1) andPi(k|k − 1) are mode-related pre-
dictions.

4 TRACK M ETRICS

To compare trackers, we score the resulting tracks via RMS
position error and track purity. These metrics are clearly
defined in the following subsections.

4.1 RMS Error

The RMS position error is simply the sum of the position
errors between the tracks and the corresponding target. In
other words, at snapshotk, the error is

RMS(k) =
1
Nt

Nt∑
t=1

(
2∑

s=1

([xt(k|k)]s − [P t(k)]s)2
) 1

2

,

where[x]s extracts thes-th element of vectorx. The results
presented in the next section report on the average RMS
error over all snapshots, i.e.,

e =
1

Nk

Nk∑

k=1

RMS(k).

4.2 Track Purity

In the experiments, we report a simple purity metric that
could indicate a track switch or merge. The intent of the
metric is to quantify the accuracy of a target/ measurement
association algorithm in a multi-node multi-mode multi-
target tracker. The correct target/ measurement association



is derived using the ground truth provided by the GPS units
located in the targets. LetCt,j be the correct association
for track t at nodej. If some measurements from nodej
pass the gate for trackt, then

Ct,j = arg minl∈{l:|zl
j
−θt|<τ}|zl

j − θt|. (14)

Otherwise,Ct,j = 0, which indicates that targett is not
detected. For modei and a chosen nodej ∈ Na, the asso-
ciation of the targett with the measurementl is βl

t,i,j and∑mj

l=1 βl
t,i,j ≤ 1. The purity of the target/ measurement

association is defined as:

Qt,i,j = β
Ct,j

t,i,j , (15)

if Ct,j 6= 0. Otherwise ifCt,j = 0,

Qt,i,j = 1−
mj∑

l=1

βl
t,i,j .

Considering, all active nodes, the average purity is

Qt,i =
1

Na

∑

j∈Na

Qt,i,j .

The average purity of the target/measurement association
is

Qt =
N∑

i=1

µi(k)Qt,i, (16)

whereµi(k) is computed in (11). Finally, the purity of
the measurement-to-target associationsQm is the average
value ofQt over the number of the targets.

5 Experiments

The real data, collected by the U.S. Army Research Labo-
ratory (ARL) at Aberdeen Proving Grounds, contains mul-
tiple targets traveling along an oval track or an adjacent
road. Six acoustic nodes were situated in the middle of the
track. The targets were fitted with GPS to obtain ground
truth information. Figure 2 shows the tracks of targets for
two different test scenarios and the initial position estimates
as computed by the method in Section 3.1.

ARL processed the raw data using an incoherent wide-
band minimum variance distortionless response (MVDR)
beamformer (Wilson et al. 2002) to obtain bearing mea-
surements. Figures 3 and 4 show the bearing measurements
obtained by different nodes for different test scenarios. In
Scenario 1, one target is traveling along the track, while the
other target is traveling down the road parallel to the track.
In Scenario 2, a convoy of four vehicles is traveling around
the track. The measurements are assumed to have 5◦ errors
for each snapshot. However, at each node, the bearing mea-
surements can be missed and false measurements could be
detected. Clearly, in Figure 4, two measurement tracks are
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Figure 2: Node locations and tracks: (a) Scenario 1, and
(b) Scenario 2. The circles represent the node locations,
the plus symbols represent the initial target positions, the
square symbols represent the estimated target positions,
and the lines represent the target trajectories.
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Figure 3: Bearing measurement output of MVDR for the
top right node in Scenario 1.

obvious fork between 40 to 130. However, a large number
of false measurement are also obtained. On the other hand,
three measurement tracks exist fork between 130 to 200.
However, in these snapshots, the targets are not always de-
tected.

For both scenarios, we initialize two tracks. In Sce-
nario 1 the number of targets is correctly modeled, but for
Scenario 2, it is underestimated. The purpose for under-
estimating the number of targets in Scenario 2 is to avoid
the occurrence of track swaps or mergence, which leads to
poor geolocation performance. For Scenario 2, we either
track the front and back targets, or the two middle targets.
Clearly, the middle targets pose a greater challenge to the
measurement-to-track association portion of the track filter.

In these experiments,Pd andPg are fixed to be 0.9999
for Scenario 1, and 0.98 for Scenario 2. Here, we do not
consider adaptive setting ofPd orPg. A bank of four mode-
matched filters are used where 3 modes represent the CT
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Figure 4: Bearing measurement output of MVDR for the
middle left node in Scenario 2.
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Figure 5: Estimated tracks: (a) Scenario 1, (b) Scenario 2
for the two end targets, and (c) Scenario 2 for the middle
targets. In the figures, the dotted and dashed lines represent
MM-JPDA and MM-PDA tracks, respectively.

model forω ∈ {−20◦, 0◦, 20◦}, and the final mode repre-
sents a stationary dynamical model. The initial mode prob-
ability µi(0) is set uniformly so thatµi(0) = 1/4.

Figure 5 shows the estimated tracks using MM-PDA or
MM-JPDA when all nodes are active and the process noise
parameterσν is set to a value that minimized the RMS po-
sition error. We considered different values forσν between
1 m2/s to 21 m2/s in intervals of 2 m2/s. The target states
were initialized via (3). The figure shows that the MM-
PDA method has the most severe adaptation delay around
the corner while the MM-JPDA has the slightest adaptation
delay.

Next, we evaluated the multiple target trackers using the
GNS method for different values ofNa. We also consid-
ered a simplified node selection method that selects the
closestNa nodes to the predicted target positions. Figures
6-8 show the average RMS position errors for the different
approaches using either (3) or the true target positions for
initialization. Again, the best process noise is used. For
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Figure 6: Average RMS errors for Scenario 1 by initialing
the track filters using (a) the true target positions, or (b)
estimated target positions via (3).

Scenario 1, it is clear in Figure 6 that the MM-JPDA is
more effective than the MM-PDA and GNS outperforms
the ’closest’ selection approach whenNa = 2 for different
initializations of the filters.

For Scenario 2, we intend to track the top and bottom tar-
gets, or the middle two targets along the oval tracks. Figure
7 shows that when tracking the end targets, GNS is able to
maintain localization performance asNa goes to two. MM-
JPDA with GNS is robust even when the initial guesses are
noisy. However, other combination of track filters and node
selection is poor at some value ofNa. Figure 8 shows that
when tracking the middle two targets in Scenario 2, the av-
erage RMS errors are almost always more than 70 meters.
Note that the average distances between two adjacent tar-
gets from top to bottom are 107, 77 and 201 meters, respec-
tively. Inspection of the tracks actually indicate that track
mergence and swaps occur during the lifetime of the tracks
while attempting to follow the middle targets.

Table 1 and 2 quantify the RMS and track purity perfor-
mance of MM-PDA/ MM-JPDA with different nodes selec-
tion methods whenNa = 2. Usually, a higher purity score
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Figure 7: Average RMS errors for Scenario 2 to track top
and bottom targets by initialing the track filters using (a)
the true target positions, or (b) estimated target positions
via (3).
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Figure 8: Average RMS errors for Scenario 2 to track mid-
dle two targets by initialing the track filters using (a) the
true target positions, or (b) estimated target positions via
(3).



Scenario 1
PDA JPDA PDA JPDA
GNS GNS closest closest

RMS err.(m) 20.69 17.46 54.93 27.65
Qm 0.970 0.981 0.966 0.969

Scenario 2 to track top and bottom targets
PDA JPDA PDA JPDA
GNS GNS closest closest

RMS err.(m) 17.55 17.91 21.63 29.41
Qm 0.935 0.932 0.929 0.886

Scenario 2 to track middle two targets
PDA JPDA PDA JPDA
GNS GNS closest closest

RMS err.(m) 208.8 126.5 76.19 178.1
Qm 0.277 0.242 0.429 0.264

Table 1: Track purity and corresponding average RMS po-
sitions errors withNa = 2 when initialing the filters using
true target positions.

Scenario 1
PDA JPDA PDA JPDA
GNS GNS closest closest

RMS err.(m) 19.90 17.55 48.45 27.66
Qm 0.968 0.981 0.944 0.967

Scenario 2 to track top and bottom targets
PDA JPDA PDA JPDA
GNS GNS closest closest

RMS err.(m) 21.95 24.71 22.21 24.90
Qm 0.905 0.890 0.923 0.903

Scenario 2 to track middle two targets
PDA JPDA PDA JPDA
GNS GNS closest closest

RMS err.(m) 124.0 126.6 78.28 165.8
Qm 0.359 0.243 0.427 0.090

Table 2: Track purity and corresponding average RMS po-
sitions errors withNa = 2 when initialing the filters via
(3).

translates to a lower RMS positions error. It is noted that a
high purity score with large RMS errors is possible because
the collection geometry can be poor. For example, in Sce-
nario 1 the MM-PDA using the ‘closest‘ method lead to the
worst estimation performance, but the purityQm is above
0.9. The MM-JPDA using GNS has the smallest RMS er-
rors and highestQm no mater how the filters are initialized.
In Scenario 2, when tracking the top and bottom targets, the
purityQm is at least 0.8. When tracking the middle two tar-
gets, the purity,Qm is poor and below 0.5. The poor purity
explains the poor RMS error values.

6 Conclusions

This paper evaluates the utility of node selection integrated
into a multiple-mode data association tracking filter. Ex-
periments on real data show that the MM-JPDA filters are
more effective than MM-PDA filters. When implementing

node selection, GNS demonstrates an obvious advantage
over the ’closest’ node selection when the number of active
nodes per snapshot is set to two. However, for the track-
ers to be effective, the targets being tracked must be suffi-
ciently separated. When targets are close, tracks can either
merge or swap. Apparently, a target separation in the order
of 70 meters is not sufficient for tracking.

Future work will investigate the performance of the
trackers when using a more sophisticated track manager.
We also plan to determine the limits of the MM-PDA and
MM-JPDA when using node selection for closely separated
targets. We also plan to investigate the utility of a mul-
tiple hypothesis tracker (MHT) for closely spaced targets
Blackman and Popoli (1999). Finally, we plan to integrate
localized node selection into the tracker.
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